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1. Use hydrostatic equilibrium and mass conservation in GR:

2. Add a prescription for the relation between pressure and 
density, P

 
= P
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3. Integrate from P
 

(r=0) = Pc to P
 

= 0, which defines M and R.

For each prescription P
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The relation between P = P(ρ), the so-called equation of state 
(EOS), is set by the interactions between the particles that 
constitute the star, and can therefore be mapped into a mass- 
radius relation, M = M (R) . 

The relation between P = P(ρ), the so-called equation of state 
(EOS), is set by the interactions between the particles that 
constitute the star, and can therefore be mapped into a mass- 
radius relation, M = M (R) . 



Equation of State of nuclear matterEquation of State of nuclear matter

EOS reasonably well- 
known for the outer parts, 
but unconstrained for the 
high-density core. 

Uncertainty due to inability 
to extrapolate our 
knowledge of normal nuclei 
(with 50% proton fraction) 
to the high-density regime 
of nearly 0% proton 
fraction. 
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•
 

QCD (e.g., existence of Bose-Einstein condensates or free 
quarks at low temperatures); relevant to high-energy and 
particle physics. 
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Dynamics of supernovae explosions.

•
 

NS–NS mergers, which are likely progenitors of short GRBs 
and sources of strong gravitational waves. 

•
 

Stability of neutron stars.

•
 

NS cooling which, compared to observed NS temperatures, 
provides NS ages. 
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From pulsars in binaries 
〈

 
M 〉

 
= 1.35 ±

 
0.04 Msun 

Some masses accurate 
down to 0.1% (!) 

Mass alone not enough 
to exclude any EOS. 

A combination of mass 
and radius required. 

… or a massive NS.
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Time-resolved spectroscopy and photometry:

Redshifted photospheric lines →M/R (potentially M/R2)

Profile of photospheric lines →M/R

Pulsations waveform →M/R

Quasi-periodic oscillations → R (M) (from disc)

Fe emission (disc) lines → R (M) (from disc)

Frequency-resolved time-delay spectrum → R (from disc)

Time-resolved spectroscopy and photometry:

Redshifted photospheric lines →M/R (potentially M/R2)

Profile of photospheric lines →M/R

Pulsations waveform →M/R

Quasi-periodic oscillations → R (M) (from disc)

Fe emission (disc) lines → R (M) (from disc)

Frequency-resolved time-delay spectrum → R (from disc)

Neutron star EOS measurements and constraints
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EXO 0748−676

335 ks with RGS cameras

Spectra of 28 X-ray bursts co-added
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Spectral line profile

Line profile set by: 

• longitudinal and 
transverse Doppler 
shifts 

• special relativistic 
beaming 

• gravitational redshift,

• light-bending

• frame-dragging
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Simulated spectral line profile

Line profile calculations courtesy of 
S. Bhattacharyya
Line profile calculations courtesy of 
S. Bhattacharyya



XMS for bright sources

Figure from J. Wilms et al.Figure from J. Wilms et al.
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Simulated pulse profile for 
the rising phase of an X-ray 
burst (T. Strohmayer). 
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Pulse profiles for a 1.8 solar 
mass NS with a spin frequency 
of 364 Hz. (C. Miller). 
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Mass and radius constraints from pulse-profile fitting. The red 
ellipse shows the 95% confidence regions from 5 typical 
bursts (C. Miller). 
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Quasi-periodic oscillationsQuasi-periodic oscillations



Mass and radius constraints from timingMass and radius constraints from timingMass and radius constraints from timing

RNS r



Emission lines from the inner discEmission lines from the inner disc

Cackett et al.; Bhattacharyya & StrohmayerCackett et al.; Bhattacharyya & Strohmayer

Serpens

 

X-1

Serpens

 

X-1

SuzakuSuzaku XMM-NewtonXMM-Newton



4U 1608–52

M
en

de
z e

t a
l.

M
en

de
z e

t a
l.

Inner disc radiusInner disc radius



D
at

a 
/ c

on
tin

uu
m

D
at

a 
/ c

on
tin

uu
m

Energy (keV)Energy (keV)

P
ow

er
P

ow
er

Frequency (Hz)Frequency (Hz)

Tracking the inner disc radiusTracking the inner disc radius

IXO/HTRS simulations by D. BarretIXO/HTRS simulations by D. Barret
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Frequency-resolved time-delay spectrumFrequency-resolved time-delay spectrum
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IXO/HTRS simulations by P. UttleyIXO/HTRS simulations by P. Uttley

1 Crab
100 ksec
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Multiple complementary (redundant) constraints of M and R
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Requirements:

- High time resolution (time scales ~ 1 ms)

- High count-rate capability (count rates ~ 1 Crab or more)

- Moderate spectral resolution (line broadening)
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